Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Hematol Oncol Stem Cell Res ; 17(1): 18-27, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37638286

RESUMO

Background: Megakaryopoiesis is characterized by progressive polyploidization and the expression of megakaryocytic markers. Numerous transcription factors and physiological signaling pathways regulate this phenomenon. Megakaryocyte differentiation induction in the K562 cell line and hematopoietic stem cells via nanocurcumin drug has been identified in our previous study. K562 cells are typical Chronic Myelogenous Leukemia (CML) cells that are resistant to apoptosis and express the bcr-abl fusion gene. These cells have the potential to differentiate into erythrocytes and megakaryocytes. Curcumin is well known as a component with strong potential to alter NFκB activity in various cells. NFκB pathway regulates various genes such as apoptotic and immune response genes. The current study attempted to evaluate the possible role of nanocurcumin in NFκB pathway regulation during the megakaryopoiesis process in the K562 cell line. Materials and Methods: Megakaryocyte markers expression and phenotype alteration of nanocurcumin-treated K562 cells have been detected by flow cytometry and microscopy imaging. The nuclear level of the RelA (p65) subunit of NFκB was determined by western blot test in K562 cells during megakaryopoiesis induction via nanocurcumin treatment at different times. The expression of NFκB target genes including c-MYC, BAX, and NQO1 was also analyzed in nanocurcumin-treated K562 cells by quantitative RT-PCR assay at different times. Results: The study has shown that nanocurcumin causes an increase in NFκB activity transiently during megakaryocyte differentiation, followed by a change in the expression of c-MYC, BAX, and NQO1 target genes. Conclusion: The NFκB pathway can be considered a new pathway for inducing megakaryocyte differentiation by nanocurcumin in vitro and in vivo megakaryopoiesis experiments.

2.
Curr Mol Pharmacol ; 16(5): 592-608, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-35578888

RESUMO

BACKGROUND: Solanine was primarily known as a toxic compound. Nonetheless, recently the apoptotic role of solanine through suppression of PI3K/AKT/mTOR signaling pathway has been shown against many malignancies except chronic myelogenous leukemia (CML). Sustaining the aforementioned pro-survival pathway, BCR-ABL fused oncoprotein in CML activates NF-kB and c- MYC for apparent immortalizing factor hTERT. Since solanine is a poor water-soluble molecule, herein, a nanocarrier was employed to intensify its pernicious effect on cancerous cells. OBJECTIVE: The current research aimed at evaluating the effect of dendrosomal nano solanine (DNS) on leukemic and HUVEC cells. METHODS: DNS characterization was determined by NMR, DLS and TEM. The viability, apoptosis and cell cycle of DNS and imatinib-treated cells were determined. A quantitative real-time PCR was employed to measure the expression of PI3K, AKT, mTOR, S6K, NF-kB, c-MYC and hTERT mRNAs. The Protein levels were evaluated by western blot. RESULTS: Investigating the anticancer property of free and dendrosomal nano solanine (DNS) and the feasible interplaying between DNS and imatinib on leukemic cells, we figured out the potential inhibitory role of DNS and DNS+IM on cancerous cells in comparison with chemotherapy drugs. Moreover, results revealed that the encapsulated form of solanine was much more preventive on the expression of PI3KCA, mTOR, NF-kB, c-MYC and hTERT accompanied by the dephosphorelating AKT protein. CONCLUSION: The results advocate the hypothesis that DNS, rather than solanine, probably due to impressive penetration, can restrain the principal pro-survival signaling pathway in erythroleukemia K562 and the HL60 cell lines and subsequently declined mRNA level of hTERT which causes drug resistance during long-term treatment. Additionally, combinational treatment of DNS and IM could also bestow an additive anti-leukemic effect. As further clinical studies are necessary to validate DNS efficacy on CML patients, DNS could have the potency to be considered as a new therapeutic agent even in combination with IM.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Solanina , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , NF-kappa B/metabolismo , Solanina/farmacologia , Solanina/uso terapêutico , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , RNA Mensageiro/genética , Linhagem Celular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
3.
Int Immunopharmacol ; 107: 108654, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35421683

RESUMO

Bacteriophages are one of the viral components of the human microbiome. M13 phages have recently been considered for immunotherapy because they can be detected by immune cells and stimulated immune responses. Macrophages are essential innate immune cells that respond to stimuli and direct subsequent immune responses. Therefore, it is crucial to evaluate the immunomodulatory effect of phage on macrophage function. For this purpose, peritoneal macrophages from BALB/c and C57BL/6 mice were cultured on the M13 phage, M13 phage-RGD, gelatin-coated, and un-coated wells. Then macrophages were examined for morphological characteristics, L. arginine metabolism, redox potential, inflammatory cytokine production, and phagocytic activity after two and seven days of culture. We observed that M13 phage-coated surfaces induced anti-inflammatory cytokines production and reduced inflammatory cytokines level of BALB/c and C57BL/6 macrophages at the steady-state and post LPS stimulation. In addition, L. arginine metabolism and phagocytic activity of macrophages were directed to the M2 phenotype by induction of arginase-1 and efferocytosis in the M13 phage-containing groups, respectively. The present study confirms the M13 phage's ability to polarize macrophages toward the M2 phenotype. However, using M13 phage in treating inflammatory diseases in animal models could determine their immunotherapy capacity in the future.


Assuntos
Bacteriófago M13 , Macrófagos Peritoneais , Animais , Anti-Inflamatórios/metabolismo , Arginina , Bacteriófago M13/metabolismo , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...